Welcome to CIVIL-510 "Quantitative Imaging for Engineers"

Lecturer: **Edward Andò** (Principal Scientist, EPFL Center for Imaging) edward.ando@epfl.ch

Lecture Two: 2021-09-27

Definitions

► Number of pixels, megapixels

- ► Number of pixels, megapixels
- ▶ Pixel *encoding* (integer values [0-255] or [0-65535] or floats)

- ► Number of pixels, megapixels
- ▶ Pixel *encoding* (integer values [0-255] or [0-65535] or floats)
- ▶ Pixel-size (units: distance) and/or the scale bar

- ► Number of pixels, megapixels
- ▶ Pixel *encoding* (integer values [0-255] or [0-65535] or floats)
- Pixel-size (units: distance) and/or the scale bar
- "Colour Map" or "Lookup-Table" to display a scalar as a colour

- ► Number of pixels, megapixels
- ▶ Pixel *encoding* (integer values [0-255] or [0-65535] or floats)
- Pixel-size (units: distance) and/or the scale bar
- "Colour Map" or "Lookup-Table" to display a scalar as a colour
- Also for display: scalar value as a height (good for height map)

- ► Number of pixels, megapixels
- ▶ Pixel encoding (integer values [0-255] or [0-65535] or floats)
- Pixel-size (units: distance) and/or the scale bar
- "Colour Map" or "Lookup-Table" to display a scalar as a colour
- Also for display: scalar value as a height (good for height map)
- We saw that multiple fields can be acquired on the same data set (height/phase or colour/temperature)

- Number of pixels, megapixels
- ▶ Pixel encoding (integer values [0-255] or [0-65535] or floats)
- Pixel-size (units: distance) and/or the scale bar
- "Colour Map" or "Lookup-Table" to display a scalar as a colour
- Also for display: scalar value as a height (good for height map)
- We saw that multiple fields can be acquired on the same data set (height/phase or colour/temperature)
- Brief foray into a 3D volume

- Number of pixels, megapixels
- ▶ Pixel encoding (integer values [0-255] or [0-65535] or floats)
- Pixel-size (units: distance) and/or the scale bar
- "Colour Map" or "Lookup-Table" to display a scalar as a colour
- Also for display: scalar value as a height (good for height map)
- We saw that multiple fields can be acquired on the same data set (height/phase or colour/temperature)
- Brief foray into a 3D volume
- ► Measuring lengths in pixels

This lesson: Optics and Hardware

Learning objectives

▶ Where do images actually come from?

This lesson: Optics and Hardware

Learning objectives

- ▶ Where do images actually come from?
- ► How does your eye work?

This lesson: Optics and Hardware

Learning objectives

- ▶ Where do images actually come from?
- ► How does your eye work?
- ▶ What are the consequences on our images of the image capture?

We're capturing light

Light is a wave, with a given amplitude and frequency.

We're capturing light

Light is a wave, with a given amplitude and frequency.

Double slit experiment – light behaving as a wave...

We're capturing light

Light is a wave, with a given amplitude and frequency.

Double slit experiment – light behaving as a wave... and a discretely (*i.e.*, as a particle).

Introducing the star of the show, a CCD or CMOS sensor - it is **one pixel**.

Introducing the star of the show, a CCD or CMOS sensor - it is **one pixel**.

A CCD is a micro-electronic device that *converts* and *accumulates* incoming photons

Introducing the star of the show, a CCD or CMOS sensor - it is **one pixel**.

A CCD is a micro-electronic device that *converts* and *accumulates* incoming photons (Quantum Efficiency)

Introducing the star of the show, a CCD or CMOS sensor – it is **one pixel**.

A CCD is a micro-electronic device that *converts* and *accumulates* incoming photons (Quantum Efficiency) into an increasing voltage, which can be read out by an ADC.

Drawing

Exposure time (Min, Max)

Introducing the star of the show, a CCD or CMOS sensor - it is **one pixel**.

A CCD is a micro-electronic device that *converts* and *accumulates* incoming photons (Quantum Efficiency) into an increasing voltage, which can be read out by an ADC.

- Exposure time (Min, Max)
- Discretisation

Introducing the star of the show, a CCD or CMOS sensor - it is **one pixel**.

A CCD is a micro-electronic device that *converts* and *accumulates* incoming photons (Quantum Efficiency) into an increasing voltage, which can be read out by an ADC.

- Exposure time (Min, Max)
- Discretisation
- ► Fill factor

Introducing the star of the show, a CCD or CMOS sensor - it is **one pixel**.

A CCD is a micro-electronic device that *converts* and *accumulates* incoming photons (Quantum Efficiency) into an increasing voltage, which can be read out by an ADC.

- Exposure time (Min, Max)
- Discretisation
- ► Fill factor
- ► Angle and colour sensitivity

Introducing the star of the show, a CCD or CMOS sensor - it is **one pixel**.

A CCD is a micro-electronic device that *converts* and *accumulates* incoming photons (Quantum Efficiency) into an increasing voltage, which can be read out by an ADC.

- Exposure time (Min, Max)
- Discretisation
- ► Fill factor
- ► Angle and colour sensitivity
- ► Number of pixels *vs* pixels in a colour picture

Let's switch on our measurement science critical thinking.

Let's switch on our measurement science *critical thinking*. What simple tests can we do to get familiar with our sensor?

"No light test"

Let's switch on our measurement science *critical thinking*. What simple tests can we do to get familiar with our sensor?

"No light test" "Dark field" measurement

Let's switch on our measurement science *critical thinking*. What simple tests can we do to get familiar with our sensor?

- "No light test" "Dark field" measurement
- ► Constant light test

Let's switch on our measurement science *critical thinking*. What simple tests can we do to get familiar with our sensor?

- "No light test" "Dark field" measurement
- ► Constant light test

Time profile of the readout value vs time \Rightarrow Histogram of values

I illuminate my sensor with a constant light, I would expect the same value being read from each pixel.

I illuminate my sensor with a constant light, I would expect the same value being read from each pixel.

If we get something else, then the image is polluted by some noise

I illuminate my sensor with a constant light, I would expect the same value being read from each pixel.

If we get something else, then the image is polluted by some noise

Where could this come from?

▶ Thermal noise, Dark currents, in CCD, gaussian

I illuminate my sensor with a constant light, I would expect the same value being read from each pixel.

If we get something else, then the image is polluted by some noise

- ▶ Thermal noise, Dark currents, in CCD, gaussian
- Photonic shot noise

I illuminate my sensor with a constant light, I would expect the same value being read from each pixel.

If we get something else, then the image is polluted by some noise

- Thermal noise, Dark currents, in CCD, gaussian
- Photonic shot noise
- Voltage discretisation (quantisation)

I illuminate my sensor with a constant light, I would expect the same value being read from each pixel.

If we get something else, then the image is polluted by some noise

- Thermal noise, Dark currents, in CCD, gaussian
- Photonic shot noise
- Voltage discretisation (quantisation)
- Salt and pepper

I illuminate my sensor with a constant light, I would expect the same value being read from each pixel.

If we get something else, then the image is polluted by some noise

- Thermal noise, Dark currents, in CCD, gaussian
- Photonic shot noise
- Voltage discretisation (quantisation)
- Salt and pepper
- Stripes, sensor arrangement, readout noise

I illuminate my sensor with a constant light, I would expect the same value being read from each pixel.

If we get something else, then the image is polluted by some noise

Where could this come from?

- Thermal noise, Dark currents, in CCD, gaussian
- Photonic shot noise
- Voltage discretisation (quantisation)
- Salt and pepper
- Stripes, sensor arrangement, readout noise

Many sources – in many cases *Additive Gaussian Noise* is a good model.

How to characterise noise?

Let's take a picture

▶ We need to select an *exposure time*

- ▶ We need to select an *exposure time*
- ► In commercial digital cameras (for backwards compatibility with film camera) we can set the ISO value

- ▶ We need to select an *exposure time*
- ▶ In commercial digital cameras (for backwards compatibility with film camera) we can set the ISO value (it's just a gain multiplicative factor on the measured value).

- ▶ We need to select an *exposure time*
- ► In commercial digital cameras (for backwards compatibility with film camera) we can set the ISO value (it's just a gain multiplicative factor on the measured value).
- actually, what settings can you control in a camera?

- ▶ We need to select an *exposure time*
- ► In commercial digital cameras (for backwards compatibility with film camera) we can set the ISO value (it's just a gain multiplicative factor on the measured value).
- actually, what settings can you control in a camera?
- ▶ With a sensor array, can I just point and shoot? No

- ▶ We need to select an *exposure time*
- ► In commercial digital cameras (for backwards compatibility with film camera) we can set the ISO value (it's just a gain – multiplicative factor – on the measured value).
- actually, what settings can you control in a camera?
- ▶ With a sensor array, can I just point and shoot? No
- ▶ 1D detector projection geometry explanation...

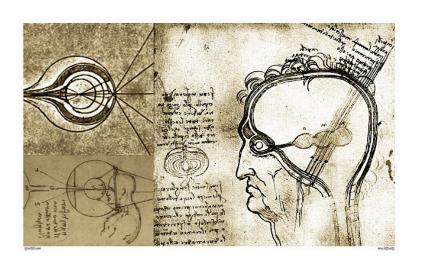
Space for drawing

The answer is some focussing element!

The answer is some focussing element!

Let's discuss the SIMPLEST optical system, called...

The answer is some focussing element!


Let's discuss the SIMPLEST optical system, called... the "Camera Obscura" or "pinhole camera".

The answer is some focussing element!

Let's discuss the SIMPLEST optical system, called... the "Camera Obscura" or "pinhole camera".

Let's draw an example with a 1D detector – geometry is all angular!

Space for drawing

Key elements to discuss

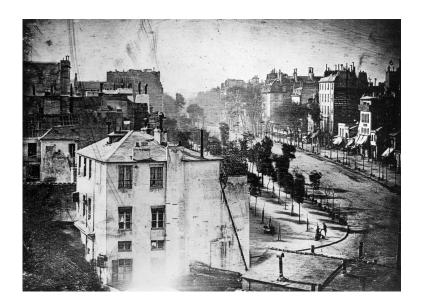
► Pixel size definition

- Pixel size definition
- ► FOV (field of view) vs. pixel size tradeoff

- Pixel size definition
- ► FOV (field of view) vs. pixel size tradeoff (optimisation?)
- ▶ pinhole size *vs.* brightness tradeoff

- Pixel size definition
- ► FOV (field of view) vs. pixel size tradeoff (optimisation?)
- pinhole size vs. brightness tradeoff (optimisation?)

- Pixel size definition
- ► FOV (field of view) vs. pixel size tradeoff (optimisation?)
- pinhole size vs. brightness tradeoff (optimisation?)
- ► Sensitivity *vs.* speed



Early photo

1. Dark image

- 1. Dark image
- 2. Direct image

- 1. Dark image
- 2. Direct image
- 3. Pinhole example

- 1. Dark image
- 2. Direct image
- 3. Pinhole example
- 4. Optics

Crash course in optics DOF

Crash course in optics
DOF (No, not degree of freedom, Depth Of Field)

Crash course in optics

DOF (No, not degree of freedom, Depth Of Field) Bokeh...

Crash course in optics

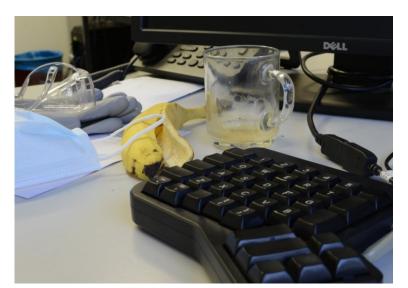
DOF (No, not degree of freedom, Depth Of Field) Bokeh...

Blur, sharpness

Crash course in optics

DOF (No, not degree of freedom, Depth Of Field) Bokeh...

Blur, sharpness



Rough autofocus algorithm

aperture f/22; exposure 2 sec Rough autofocus algorithm

aperture f/10; exposure 1/2 sec Rough autofocus algorithm

Rough autofocus algorithm aperture f/5.6; exposure 1/6 sec

Rough autofocus algorithm aperture f/4; exposure 1/13 sec

Sources of blur:

► Spatial/geometric

Sources of blur:

- ► Spatial/geometric
- ► What else?

Sources of blur:

- ► Spatial/geometric
- ► What else?
- tracking